Rapid arrival and integration of ascending sensory information in layer 1 nonpyramidal neurons and tuft dendrites of layer 5 pyramidal neurons of the neocortex.
نویسندگان
چکیده
Ascending sensory inputs arriving in layer 1 of the neocortex carry crucial signals for detecting salient information; but how the inputs are processed in layer 1 is unknown. Using a whole-cell in vivo recording technique targeting nonpyramidal neurons in layer 1 and tuft dendrites of layer 5 pyramidal neurons in layers 1-2, we examined the processing of these ascending sensory inputs in the barrel cortex. Here, we show that local circuit and deeper-layer-projecting neurons in layer 1, as well as tuft dendrites and somata of layer 5 pyramidal neurons, respond to multiple whiskers (6-15) with robust EPSPs. Remarkably, the latency for primary whisker-evoked responses is as short as approximately 5-7 msec in layer 1 neurons and tuft dendrites of layer 5 pyramidal neurons. In addition, the latency for primary whisker-evoked responses in tuft dendrites of layer 5 pyramidal neurons is approximately 1 msec shorter than that in somata. These results indicate that ascending sensory inputs arrive in layers 1 and 4 concurrently, which provides a neural mechanism for rapid integration and coincident detection of salient sensory information.
منابع مشابه
Glycosaminoglycan Chains and Axon Regeneration
Specific sensory input to neocortex arrives in layer 4, whereas nonspecific input, such as information about salience or novelty, is thought to arrive in layer 1. This scheme might imply a slower arrival of inputs to layer 1. In this issue, Zhu and Zhu examine this question using paired whole-cell recording in vivo from layer 1 nonpyramidal cells and the dendrites of the output pyramidal neuron...
متن کاملPotassium Channels Control the Interaction between Active Dendritic Integration Compartments in Layer 5 Cortical Pyramidal Neurons
Active dendritic synaptic integration enhances the computational power of neurons. Such nonlinear processing generates an object-localization signal in the apical dendritic tuft of layer 5B cortical pyramidal neurons during sensory-motor behavior. Here, we employ electrophysiological and optical approaches in brain slices and behaving animals to investigate how excitatory synaptic input to this...
متن کاملSynaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle.
Tuft dendrites are the main target for feedback inputs innervating neocortical layer 5 pyramidal neurons, but their properties remain obscure. We report the existence of N-methyl-D-aspartate (NMDA) spikes in the fine distal tuft dendrites that otherwise did not support the initiation of calcium spikes. Both direct measurements and computer simulations showed that NMDA spikes are the dominant me...
متن کاملPhysiology of Layer 5 Pyramidal Neurons in Mouse Primary Visual Cortex: Coincidence Detection through Bursting
L5 pyramidal neurons are the only neocortical cell type with dendrites reaching all six layers of cortex, casting them as one of the main integrators in the cortical column. What is the nature and mode of computation performed in mouse primary visual cortex (V1) given the physiology of L5 pyramidal neurons? First, we experimentally establish active properties of the dendrites of L5 pyramidal ne...
متن کاملGlutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons.
The deeper part of neocortical layer VI is dominated by nonpyramidal neurons, which lack a prominent vertically ascending dendrite and predominantly establish corticocortical connections. These neurons were studied in rat neocortical slices using patch-clamp, single-cell reverse transcription-polymerase chain reaction, and biocytin labeling. The majority of these neurons expressed the vesicular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 6 شماره
صفحات -
تاریخ انتشار 2004